

Therapeutic Potential of a Humanized Antibody for the Treatment of Venezuelan Equine Encephalitis dstl Venezuelan Ed Virus Infection

Dr. David Ulaeto

Defence Science and Technology Laboratory, Porton Down, UK

Venezuelan Equine Encephalitis Virus

- Positive strand RNA virus (~11.5Kb)
- Structural proteins translated as a polyprotein
 - 26S mRNA
- Responsible for large outbreaks
 - 1995; 100,000 human cases in Colombia and Venezuela, 300 fatal encephalitis cases
 - 1961-2004, Panama; 6% fatality rate in cases of serotype ID

Venezuelan Equine Encephalitis Virus

- VEEV causes an acute, febrile illness
 - Prostration usually 2-6 days postinfection
 - encephalitis in ~1-5% of cases

 chills, high fever (38-40.5°C), headache, malaise, photophobia, sore throat, myalgia, vomiting, conjunctival infection, muscle tenderness

CNS involvement:

- seizures, ataxia, paralysis, coma
- epilepsy, amnesia, mental retardation, hydroencephaly

11 October 2011

VEEV as a potential biological weapon

- Transmissible by the aerosol route
- Low infectious dose
- History of weaponisation
- No licensed vaccines or anti-virals

Antibodies to E2 are protective

Dstl 2011

Time of antibody administration

Data taken from Phillpotts RJ et al, 2002, Vaccine

Benefit of antibody therapy to the military

- Model military impact of antibodies utilising
 - Agreed representative scenarios
 - Historical meteorology
 - Verified and validated HPAC modelling toolset
 - Sample over uncertainty in the input values

VEEV has a number of serotypes

THE VENEZUELAN EQUINE ENCEPHALOMYELITIS COMPLEX

					Disease in	
Subtype	Variety	Prototype Strain	Origin	Cycle	Horse	Man
Ι	A/B	Trinidad donkev	Donkey (Trinidad)1	Epizootic	+	+
	Ċ	P-676	Horse (Venezuela) ²	Epizootic	+	+
	D	3880	Human (Panama) ³	Enzootic	_	+
	Е	Mena II	Human (Panama)1	Enzootic	_	+
	F	78V-3531	Mosquito (Brazil) ⁴	Enzootic	_	?
II (Everglades)		Fe3-7c	Mosquito (Florida) ³	Enzootic	-	+
III (Mucambo)	Α	Mucambo (BeAn8)	Monkey (Brazil) ⁶	Enzootic	-	+
	В	Tonate (CaAn410-D)	Bird (French Guiana) ⁷	Enzootic	_	+
	С	71D-1252	Mosquitoes (Peru) ⁸	Enzootic	-	?
IV (Pixuna)		Pixuna (BeAn356445)	Mosquito (Brazil) ⁶	Enzootic	-	?
V (Cabassou)		Cabassou	Mosquito (French Guiana) ⁷	Enzootic	-	?
VI		AG80-663	Mosquito (Argentina) ⁹	Enzootic	-	+

Monoclonal antibody 1A3B7 is cross-reactive and cross-protective

Virus (serogroup)	Survivors/total	
100 pfu s.c	PBS	1A3B7
		100 µg/ml i.p
TrD (IA/B)	0/10	9/10**
P676 (IC)	0/5	4/5*
3880 (ID)	0/5	4/5*
Mena II (IE)	0/5	5/5**
Fe37c (II)	0/5	5/5*
Mucambo (IIIA)	4/10	10/10*

*p<0.05; **p<0.01

R.J. Phillpotts. Virus Research 120 (2006) 107-112

11 October 2011

Dstl 2011

Humanisation strategies

- Murine antibodies may induce an anti-antibody response
 - Clearance of antibody

11 October 2011

Dstl 2011

Adverse reactions

Towards human use

- Murine antibodies may induce an anti-antibody response
 - Clearance of antibody
 - Adverse reactions

Selection of framework regions

Light chain

11 October 2011

© Dstl 2011

Affinity of humanised monoclonal antibodies

• Binding of monoclonal antibodies to inactivated VEEV antigen

Affinity of humanised monoclonal antibody

• Binding of monoclonal antibodies to inactivated VEEV antigen

Humanised H+L chains are more human-like

- Humanness score (Z score) measure of typicality within the human repertoire
- Can assign an antibody as above or below the mean

Dstl 2011

Humanised antibody retains broad reactivity against strains known to be pathogenic for humans

Humanised antibody can neutralise virus

Pharmacokinetic data

- Half-life:
 - 1A3B7 22.5 days
 - h1A3B7 7.3 days

11 October 2011

Dstl 2011

Mouse challenge model for VEEV

	Mouse	Human		
ID ₅₀	1-30 pfu	~10 pfu		
Clinical signs	Extraneural stage leading to CNS stage	Extraneural stage leading to CNS stage in ~15% of cases		
Time to clinical signs	4-7 days	1-5 days		
Fatal encephalitis	100%	1-5%		
Pathogenesis	Invasion of the brain via the olfactory system; invasion faster by aerosol route than peripheral routes	Believed that invasion of the brain via the olfactory system is similar to mouse model		
Determinants of immunity	Primarily mediated by antibody – passive transfer has protected against peripheral and aerosol challenge.	Serum neutralising antibody correlates with protection		

Balb/c mouse

Variables:

- Virus strain
- Mouse strain
- Route of infection

11 October 2011

© Dstl 2011

Protection against lethal virus challenge

- Mouse model of disease, antibody given 24 hours prior to challenge
- Injected VEEV challenge (100_{LD50})

Immunogenicity of h1A3B7

T-cell proliferation assessed with naïve donors

- Minimum 40 donors, representative of global HLA class-II profiles
- CD8 depleted
- Proliferation measured by decrease in fluorescence
 - Cells preloaded with CFSE dye
 - In cell division each daughter cell has 50% less signal than the parent
- Controls
 - PPD (memory)
 - KLH (naïve)
 - TT peptide and HA peptide

Measuring T –cell proliferation with CFSE

• Proliferation is measured in sextuplicate: the highest and lowest values are discarded from analysis

11 October 2011

Dstl 2011

Immunogenicity of Chimeric 1A3B7

Graphs show NUMBER of responding donors as 'percentage immunogenicity'

CDI>2, SD cut-off = 2

Each coloured segment represents one responding donor

11 October 2011 © Dstl 2011

Immunogenicity of h1A3B7

Graphs show NUMBER of responding donors as 'percentage immunogenicity'

CDI>2, SD cut-off = 2

Each coloured segment represents one responding donor

Percentage Antigenicity Split by Donor - Heavy Chain

11 October 2011 © Dstl 2011

Future work

- Production of antibody
 - Yields are low
- Assess ability of antibody to offer protection against challenge with aerosolised VEEV
- Understand protection offered at different times of administration relative to challenge
- Further assess suitability for humans

11 October 2011

Summary

- A monoclonal antibody is effective in treating VEEV
- The molecule is derived from a mouse
 - it may cause adverse reactions in humans
- To reduce this potential, we have produced a panel of 'humanised' antibodies
- One antibody has been identified that is biologically active, and is able to offer protection against lethal VEEV challenge in a small animal model of disease
- Has the potential to be a useful therapy not just for military population but also lab' workers and during outbreaks

11 October 2011

Victoria Lawson

Stuart Perkins Lyn O'Brien Sarah Goodchild Amanda Phelps Christopher Logue Oliver Lanning Bob Phillpotts

Monoclonal antibodies courtesy of John Roehrig

11 October 2011

Dstl 2011

Questions

11 October 2011

© Dstl 2011

